Notasidan Rumus Fungsi Jika suatu fungsi f memetakan setiap x anggota himpunan A ke y anggota himpunan B, maka dapat ditulis dengan notasi fungsi yaitu: f : x → y. Fungsi f seperti dalam notasi tersebut di atas dapat juga dituliskan rumus fungsinya, yaitu: f(x) = y. Contoh : Diketahui himpunan A = { 1, 2, 3 } dan B = { 4, 5, 6,7,8 }.
Turisberfoto di sebelah patung singa Merlion di kawasan pusat bisnis Singapura 6 Februari 2015. [REUTERS / Edgar Su] TEMPO.CO, Jakarta - Kementerian Luar Negeri Singapura menyatakan bahwa tersangka korupsi Surya Darmadi tidak berada di negaranya. Sebelumnya Kejaksaan Agung RI menyatakan ia kabur ke Singapura dan pihaknya sedang berupaya
Kalkulus I » Fungsi › Fungsi dan Grafik Fungsi Fungsi Jika variabel \y\ bergantung pada variabel \x\ sedemikian rupa sehingga setiap nilai \x\ menentukan tepat satu nilai \y\, maka kita mengatakan bahwa \y\ adalah fungsi dari \x\. Oleh Tju Ji Long Statistisi Hub. WA 0812-5632-4552 Salah satu kerangka penting dalam kalkulus adalah analisis hubungan antar variabel. Hubungan semacam itu bisa dideskripsikan dalam bentuk grafik, rumus formula, secara numerik dengan tabel, atau dalam kata-kata. Banyak hukum ilmiah dan prinsip-prinsip teknik menggambarkan bagaimana satu kuantitas bergantung pada yang lain. Gagasan ini diresmikan pada tahun 1673 oleh Gottfried Wilhelm Leibniz yang menciptakan istilah fungsi untuk menunjukkan ketergantungan satu kuantitas pada kuantitas lainnya, seperti dijelaskan dalam definisi berikut. Definisi Fungsi Jika variabel \y\ bergantung pada variabel \x\ sedemikian rupa sehingga setiap nilai \x\ menentukan tepat satu nilai \y\, maka kita mengatakan bahwa \y\ adalah fungsi dari \x\. Terdapat 4 metode untuk merepresentasikan fungsi, yaitu Secara numerik dengan tabel Secara aljabar dengan rumus formula. Misalnya, rumus \C = 2πr\ menyatakan keliling \C\ dari lingkaran sebagai fungsi jari-jarinya \r\. Hanya ada satu nilai \C\ untuk setiap nilai \r\. Secara geometri dengan grafik Secara verbal dengan kata-kata. Sebagai contoh, Hukum Gravitasi Universal Isaac Newton sering dinyatakan sebagai berikut Gaya tarik gravitasi antara dua benda di Alam Semesta berbanding lurus dengan perkalian massa di antara kedua benda tersebut dan berbanding terbalik dengan kuadrat jarak di antara kedua benda. Atau dapat dinyatakan dalam rumus berikut. \[ F = G \frac{m_1m_2}{r^2} \] Grafik Fungsi Bilamana daerah asal dan daerah hasil sebuah fungsi merupakan bilangan riil, kita dapat membayangkan fungsi itu dengan menggambarkan grafiknya pada suatu bidang koordinat. Dan grafik fungsi \f\ adalah grafik dari persamaan \y=fx\. Gambar 1 berikut ini menampilkan grafik dari beberapa fungsi. Gambar 1. Contoh grafik dari beberapa fungsi Grafik dapat memberikan informasi visual yang berharga tentang suatu fungsi. Namun, tidak setiap kurva pada bidang \xy\ adalah grafik suatu fungsi. Sebagai contoh, perhatikan kurva pada Gambar 2, yang dipotong pada dua titik berbeda, a, b dan a, c, dengan garis vertikal. Gambar 2. Kurva ini bukan grafik fungsi Kurva ini tidak dapat berupa grafik \y = fx\ untuk fungsi \f\ apa pun. Ini karena yang mana tidak mungkin, karena \f\ tidak dapat mempunyai dua nilai yang berbeda untuk \a\. Kita nyatakan hasil penting ini dalam definisi berikut. Definisi Uji Garis Vertikal Kurva pada bidang \xy\ adalah grafik dari fungsi \f\ jika dan hanya jika tidak ada garis vertikal yang memotong kurva lebih dari satu kali. Sebagai contoh, grafik persamaan \ x^2 + y^2 = 25 \ adalah lingkaran berjari-jari 5 yang berpusat pada titik asal origin seperti ditampilkan Gambar 3 berikut. Karena garis vertikal memotong grafik lebih dari satu kali, maka persamaan ini tidak mendefinisi \y\ sebagai fungsi dari \x\. Gambar 3. Kurva \ x^2 + y^2 = 25 \ Contoh 1 Buatlah sketsa grafik dari fungsi Penyelesaian Grafik dari fungsi ini ditampilkan pada Gambar 4. Untuk membuat grafik ini, buatlah sebuah tabel nilai di mana untuk sumbu \x\ merupakan daerah asal domain fungsi dan sumbu \y\ merupakan daerah hasil range fungsi, dan hubungkan titik-titik itu dalam sebuah kurva. Daerah asal mula domain fungsi ini adalah himpunan semua bilangan riil \R\ dan daerah hasilnya yaitu \ \{ y y \geq -2 \} \. Dengan demikian, akan kita peroleh grafik fungsi yang diperlihatkan dalam Gambar berikut Gambar 4. Grafik fungsi \y = x^2-2\ Contoh 2 Buatlah sketsa grafik dari fungsi Penyelesaian Grafik dari fungsi ini ditunjukkan pada Gambar 5. Sama seperti pada Contoh 1, untuk memperoleh grafik ini kita membuat sebuah tabel nilai di mana untuk sumbu \x\ merupakan daerah asal fungsi dan sumbu \y\ merupakan daerah hasil fungsi, dan hubungkan titik-titik itu dalam sebuah kurva. Kita gunakan daerah asal mula domain natural. Daerah asal mula untuk fungsi ini adalah semua bilangan riil kecuali 1 dan daerah hasil fungsi adalah \ y y \neq 0 \. Dengan demikian, akan kita peroleh grafik fungsi yang diperlihatkan dalam Gambar berikut Gambar 5. Grafik fungsi \ y = \frac{2}{x-1} \ Cukup sekian ulasan singkat mengenai fungsi dan grafik fungsi dalam artikel ini. Terima kasih telah membaca artikel ini sampai selesai. Jika Anda merasa artikel ini bermanfaat, boleh dibantu share ke teman-temannya, supaya mereka juga bisa belajar dari artikel ini. Sumber Anton, Howard., et al. 2012. Calculus, 10th ed. Hoboken John Wiley & Sons, Inc. Purcell, Edwin J., Dale Verberg., dan Steve Rigdon. 2007. Calculus, ed 9. Penerbit Pearson. Jika Anda merasa artikel ini bermanfaat, bantu klik tombol suka di bawah ini dan tuliskan komentar Anda dengan bahasa yang sopan.
dandengan grafik Disajikan suatu fungsi dalam bentuk soal cerita, dapat menyatakan dalam bentuk diagram panah ! C2 Uraian 2 Nyatakan pernyataan tersebut dalam bentuk diagram panah! 3. Suatu ketika, anggota PMI mengunjungi SMP N 2 Wuryantoro. Di situ terjadi kegiatan donor darah di antara bapak ibu guru dan karyawan SMP N 2 Wuryantoro.
Dalam artikel sebelumnya telah dijelaskan mengenai cara menggambar grafik fungsi kuadrat apabila persamaan atau rumus fungsi kuadrat tersebut sudah diketahui. Sekarang yang menjadi pertanyaannya adalah bagaimana jika gambar atau ciri-ciri grafik fungsi kuadrat sudah diketahui, dapatkah kita menentukan persamaan fungsi kuadrat dari grafik tersebut? Tentu saja bisa. Apabila sketsa grafik suatu fungsi kuadrat diketahui, maka kita dapat menentukan rumus fungsi kuadrat itu. Proses demikian disebut membentuk atau menyusun fungsi kuadrat. Lalu tahukah kalian bagaimana caranya? Caranya sangat mudah sekali. Bisanya dalam soal telah ditetukan gambar grafik fungsi kuadrat atau keterangan-keterangan mengenai grafik tersebut. Keterangan-keterangan yang diketahui pada sketsa grafik fungsi kuadrat seringkali mempunyai ciri-ciri atau sifat-sifat tertentu. Ciri-ciri itu diantaranya adalah sebagai berikut. 1 Grafik fungsi kuadrat memotong sumbu X di Ax1, 0 dan Bx2, 0 serta melalui sebuah titik tertentu, maka persamaan fungsi kuadratnya dapat ditentukan dengan rumus sebagai berikut. y = fx = ax – x1x – x2 Dengan nilai a ditentukan kemudian. 2 Grafik fungsi kuadrat menyinggung sumbu-X di Ax1, 0 dan melalui sebuah titik tertentu, maka persamaan fungsi kuadratnya dapat dibentuk dengan menggunakan rumus sebagai berikut. Dengan nilai a ditentukan kemudian. 3 Grafik fungsi kuadrat melalui titik puncak atau titik balik Pxp, yp dan melalui sebuah titik tertentu maka persamaan fungsi kuadrat dapat kita susun dengan menggunakan rumus sebagai berikut. y = fx = ax – xp2 + yp Dengan nilai a ditentukan kemudian. 4 Grafik fungsi kuadrat melalui titik-titik Ax1, y1, Bx2, y2 dan Cx3, y3 maka persamaan fungsi kuadratnya dapat kita nyatakan sebagai berikut. Dengan nilai a, b dan c ditentukan kemudian. Oke, sekarang biar kalian paham mengenai cara menyusun atau membentuk fungsi kuadrat berdasarkan gambar atau ciri-ciri grafik fungsi kuadrat, perhatikan tiga contoh soal dan pembahasannya berikut ini. Contoh soal 1 Sebuah grafik fungsi kuadrat memotong sumbu-X di A1, 0 dan B2, 0. Apabila grafik tersebut juga melalui titik 0, 4, tentukanlah persamaan fungsi kuadratnya! Jawab Persamaan fungsi kuadrat dapat dinyatakan sebagai y = ax – 1x – 2. Nilai a ditentukan dari keterangan bahwa fungsi kuadrat itu melalui titik 0, 4. Artinya untuk nilai x = 0 diperoleh y = 4. y = ax – 1x – 2 4 = a0 – 10 – 2 4 = a–1 –2 4 = 2a a = 2 Dengan demikian, persamaan fungsi kuadratnya adalah sebagai berikut. y = fx y = ax – 1x – 2 y = 2x – 1x – 2 y = 2x2 – x – 2x + 2 y = 2x2 –3x + 2 y = 2x2 – 6x + 4 Contoh soal 2 Pada gambar di atas, diperlihatkan sketsa grafik dari sebuah fungsi kuadrat. Tentukanlah persamaan grafik fungsi tersebut. Jawab Berdasarkan gambar grafik fungsi di atas, kita dapat menetapkan bahwa titik puncak parabola di 1 ½, 0 dan melalui titik 0, 4 ½. Persamaan fungsi kuadratnya dapat ditentukan sebagai berikut. y = fx = ax – 1 ½2 karena grafik fungsi melalui titik 0, 4 ½ maka 4 ½ = a0 – 1 ½2 4 ½ = 9/4 a a = 9/2 × 4/9 a = 2 Dengan demikian, rumus fungsi kuadratnya adalah y = fx y = ax – 1 ½2 y = 2x – 1 ½2 y = 2x2 – 23/2 x + 9/4 y = 2x2 – 3x + 9/4 y = 2x2 – 6x + 9/2 y = 2x2 – 6x + 4 ½ Contoh soal 3 Grafik fungsi kuadrat f melalui titik-titik A0, –6 , B–1, 0 dan C1, –10. Tentukanlah 1. Persamaan grafik fungsi kuadrat 2. Titik-Titik potong dengan sumbu-X 3. Titik puncak atau titik balik grafik fungsi f. Jawab Menentukan persamaan grafik Dari keterangan mengenai ciri-ciri grafik kita dapat menentukan persamaan fungsi kuadrat dengan menggunakan rumus sebagai berikut y = fx = ax2 + bx + c Pertama, kita tentukan nilai c terlebih dahulu. Nilai c dapat diketahui apabila nilai x = 0. Karena grafik melalui titik A0, –6 , maka y = ax2 + bx + c ……………………………. Pers 1 –6 = a02 + b0 + c c = –6 jadi, sekarang kita dapatkan persamaan fungsi baru yaitu y = ax2 + bx –6 ……………………………. Pers 2 Kedua, kita tentukan nilai a dan b dengan menggunakan persamaan 2 dan dua titik lainnya dengan catatan nilai x ≠ 0. Grafik melalui titik B–1, 0, berarti x = –1 dan y = 0 sehingga kita dapatkan persamaan sebagai berikut y = ax2 + bx –6 0 = a–12 + b–1 – 6 0 = a – b – 6 a – b = 6 a = 6 + b ……………………………. Pers 3 Grafik melalui titik C1, –10. berarti x = 1 dan y = –10 sehingga kita dapatkan persamaan sebagai berikut y = ax2 + bx –6 –10 = a12 + b1 – 6 –10 = a + b – 6 a + b = –10 + 6 a + b = –4 ……………………………. Pers 4 Dengan mensubtitusikan persamaan 3 ke persamaan 4, kita dapatkan nilai b sebagai berikut a + b = –4 6 + b + b = –4 6 + 2b = –4 2b = –4 – 6 2b = –10 b = –10/2 b = –5 Dengan mensubtitusikan nilai b = –5 ke persamaan 3 atau persamaan 4, kita peroleh nilai a sebagai berikut. a = 6 + b a = 6 + –5 a = 1 Dengan demikian kita dapatkan nilai a = 1, b = –5 dan c = –6 sehingga apabila ketiga nilai tersebut kita masukkan ke persamaan 1 kita dapat rumus fungsi kuadrat sebagai berikut. y = ax2 + bx + c y = 1x2 + –5x + –6 y = x2 – 5x – 6 Menentukan titik potong dengan sumbu-X Titik potong dengan sumbu-X dapat dicari apabila nilai y = 0. Dari persamaan fungsi kuadrat y = fx = x2 – 5x – 6, kita dapatkan titik potong dengan sumbu-X sebagai berikut. y = x2 – 5x – 6 0 = x2 – 5x – 6 Dengan menggunakan metode pemfaktoran, kita dapatkan nilai-nilai x sebagai berikut. x – 6x + 1 = 0 x1 = 6 dan x2 = –1 Dengan demikian, titik-titik potong dengan sumbu-X adalah di titik 6 , 0 dan –1, 0. Menentukan titik puncak atau titik balik Karena nilai a > 0, maka titik balik parabola merupakan titik balik minimum dimana bentuk kurva parabola adalah terbuka ke atas. Titik balik minimum dapat ditentukan dengan menggunakan rumus sebagai berikut. Titik balik = x, y = –b , D 2a –4a Dimana D = b2 – 4ac dengan a = 1, b = –5 dan c = –6 Titik balik = –b , b2 – 4ac 2a –4a Titik balik = ––5 , –52 – 41–6 21 –41 Titik balik = 2 ½, – 12 ¼ Jadi, titik balik parabola y = x2 – 5x – 6 adalah di 2 ½, – 12¼ Demikianlah artikel tentang cara menentukan persamaan fungsi kuadrat berdasarkan grafik lengkap dengan contoh soal dan pembahasan. Semoga dapat bermanfaat untuk Anda. Apabila terdapat kesalahan tanda, simbol, huruf maupun angka dalam perhitungan mohon dimaklumi. Terimakasih atas kunjungannya dan sampai jumpa di artikel berikutnya.
Contoh: f: R→R didefinisikan oleh f(x) = 3 dengan R = bilangan real. Grafik fungsi f(x) =3 adalah sebagai berikut : Fungsi Eksponen adalah fungsi yang variabel bebasnya berupa pangkat dari suatu konstanta dalam persamaan fungsi tersebut. Bentuk umum : y= a x Grafik fungsi eksponen tidak memiliki titik potong pada sumbu x dan tidak
Fungsi Linear - Pengertian Fungsi Linear, Grafik, dan Contoh Soal A. Pengertian Fungsi Linear dan Bentuk Umum Fungsi linear adalah fungsi yang disusun oleh persamaan aljabar yaitu berupa konstanta maupun suku berderajat satu, sehingga menghasilkan garis linear dalam koordinat kartesius. Garis linear merupakan istilah matematika untuk garis lurus. Sebagaimana dalam konsep aljabar, konstanta merupakan suatu nilai tetap, misalnya 1, 2, Π dan e angka Euler. Sedangkan suku berderajat satu merupakan bentuk ekspresi aljabar dengan nilai pangkat variabel sama dengan satu. Navigasi Cepat A. Pengertian Fungsi Linear A1. Bentuk Umum Fungsi Linear A2. Contoh Fungsi Linear B. Grafik Fungsi Linear B1. Cara Membuat Grafik Fungsi Linear Contoh 1 Grafik fx = 2x + 1 Contoh 2 Grafik y = x Contoh 3 Grafik y = 2 horizontal Contoh 4 Grafik 2y = -4 + 2 bukan bentuk umum A1. Bentuk Umum Fungsi Linear Berikut bentuk umum fungsi linear f x → ax + b atau dalam notasi fungsi umum fx = ax + b y = ax + b atau dengan menggunakan definisi kemiringan garis gradien, koefisien a dapat diganti menjadi koefisien gradien m fx = mx + b y = mx + b dengan a = koefisien variabel x Nilai a dalam bentuk umum fungsi linear fx = ax + b merepresentasikan kemiringan garis gradien dalam koordinat kartesius, sehingga bentuk umum fx = ax + b dapat ditulis menjadi fx = mx + b. b = merupakan suatu nilai tetap konstanta Nilai b dalam bentuk umum fungsi fx = ax + b merepresentasikan titik potong garis terhadap sumbu y di koordinat kartesius. A2. Contoh Fungsi Linear Berikut beberapa contoh fungsi linear fx = 2x + 1 bentuk umum y = -4x + 2 bentuk umum fx = x bentuk umum fx = 3 bentuk umum y = 5 bentuk umum x = x + 1 bentuk umum 3y = 3x + 1 bukan bentuk umum 2y = -x + 5 bukan bentuk umum Pada contoh di atas, fungsi 3y = 3x + 1 dan 2y = -x +1 merupakan fungsi linear walaupun tidak mematuhi bentuk umum fungsi linear. Kedua fungsi tersebut diubah ke bentuk umumnya dengan menjadikan koefisien y menjadi 1. Contoh mengubah ke bentuk umum fungsi linear Mengubah 3y = 3x + 1 ke bentuk umum fungsi linear 3y = 3x + 1 ⇔ y = x + 1/3 atau fx = x + 1/3 Jadi, bentuk umumnya adalah fx = x + 1/3 Mengubah 2y = -x + 5 ke bentuk umum fungsi linear 2y = -x + 5 ⇔ y = -1/2x + 5/2 atau fx = -1/2x + 5/2 Jadi, bentuk umumnya adalah fx = -1/2x + 5/2 B. Grafik Fungsi Linear dan Contohnya B1. Cara Membuat Grafik Fungsi Linear Berikut beberapa langkah untuk membuat grafik fungsi linear dalam koordinat kartesius Mengidentifikasi fungsi linear Apakah fungsi termasuk linear? Apakah fungsi sudah sesuai dengan bentuk umum fungsi linear? Jika belum, ubah persamaan ke bentuk umum fungsi linear Merancang grafik fungsi linear Apakah fungsi mempunyai konstanta c? Jika tidak, maka c = 0 dan grafik fungsi memotong titik pusat koordinat kartesius di 0, 0 Jika ya, maka fungsi memotong sumbu y dengan nilai c Apakah fungsi mempunyai variabel bebas ax? Jika tidak mempunyai variabel bebas maka grafik akan berbentuk horizontal a = 0, tidak miring horizontal Jika mempunyai variabel bebas, maka kemiringan grafik gradien ditentukan oleh nilai a dalam bentuk umum y = ax + b ⇔ y = mx + b m 0, miring ke kanan Lakukan substitusi ke model fungsi minimal 2 nilai bebas Menggambar Grafik Menandai titik rancangan grafik Titik Potong Dan titik hasil substitusi Menarik garis dari titik-titik yang telah ditandai Contoh 1 Grafik Fungsi fx = 2x + 1 Identifikasi fungsi linear fx = 2x + 1 Fungsi termasuk linear, karena terdiri dari konstanta dan suku berderajat satu Fungsi sudah sesuai dengan bentuk umum fungsi linear Perancangan grafik fx = 2x + 1 Mempunyai nilai c = 1, sehingga titip potong sumbu y di titik Tp0, 1 Mempunyai koefisien a = 2, sehingga m > 0 dan grafik miring ke kanan Substitusi nilai acak misalnya diambil nilai acak -2 dan 3 diperoleh fx = 2x + 1 y = 2x + 1 f-2 = 2-2 + 1 = -3 Diperoleh titik Ax, y = A-2, -3 f2 = 23 + 1 = 7 Diperoleh titik Bx, y = B3, 7 Menggambar grafik fx = 2x + 1 Sehingga dapat dibuat grafik berikut dalam koordinat kartesius Grafik Fungsi Linear fx = 2x + 1 Contoh 2 Grafik Fungsi y = x Identifikasi fungsi y = x Fungsi termasuk linear, karena tersusun dari suku berpangkat 1 Fungsi sudah sesuai dengan bentuk umum fungsi linear y = x ⇔ fx = x Perancangan grafik fungsi y = x Tidak mempunyai nilai c atau c = 0, sehingga grafik memotong titik koordinat Tp0, 0 Mempunyai koefisien a = 1, sehingga m > 0 dan grafik miring ke kanan Substitusi nilai acak misalnya diambil nilai acak -4 dan 2 diperoleh y = x ⇔ fx = x f-4 = x = -4 Diperoleh titik Ax, y = -4, -4 f2 = x = 2 Diperoleh titik Bx, y = 2, 2 Menggambar fungsi y = x Sehingga dapat dibuat grafik berikut dalam koordinat kartesius Grafik Fungsi Linear y = x Contoh 3 Grafik Fungsi y = 2 Identifikasi fungsi y = 2 Fungsi termasuk linear karena tersusun dari konstanta Fungsi sudah sesuai dengan bentuk umum fungsi linear y = 2 ⇔ fx = 2 Perancangan grafik fungsi y = 2 Fungsi mempunyai nilai c = 2, sehingga grafik memotong sumbu y di Tp0, 2 Fungsi tidak mempunyai variabel bebas, sehingga nilai a = 0 dan grafik berbentuk horizontal Substitusi nilai acak misalnya diambil nilai acak -2 dan 3 diperoleh y = 2 ⇔ fx = 2 f-2 = 2 Diperoleh titik A-2, 2 f3 = 2 Diperoleh titik B3, 2 ∴ Dapat diketahui semua nilai yang disubstitusikan akan bernilai 2 Menggambar fungsi y = 2 Sehingga dapat dibuat grafik berikut dalam koordinat kartesius Grafik Fungsi Linear y = 2 Contoh 4 Grafik Fungsi 2y = -4x + 2 Identifikasi fungsi 2y = -4x + 2 Fungsi merupakan linear karena tersusun oleh konstanta dan suku berderajat satu Fungsi belum memenuhi bentuk umum fungsi linear, karena ruas kanan untuk variabel y mempunyai koefisien bukan satu Sehingga untuk merancang grafik, fungsi diubah ke dalam bentuk umum fungsi linear 2y = -4x + 2 ⇔ y = -4x + 2 2 ⇔ y = -2x + 1 fx = -2x + 1 Sehingga bentuk umum fungsi linear dari 2y = -4x + 2 adalah fx = -2x + 1 Perancangan grafik fungsi dalam bentuk umumnya fx = -2x + 1 Bentuk umum mempunyai nilai c = 1, sehingga grafik fungsi memotong sumbu y di Tp0, 1 Bentuk umum mempunyai koefisien a = -2, sehingga m < 0 dan grafik miring ke kiri Substitusi nilai bebas, misalnya -2 dan 2 diperoleh 2y = -4x + 2 ⇔ y = -2x + 1 fx = -2x + 1 f-2 = -2-2 + 1 = 4 + 1 = 5 Diperoleh titik A-2, 5 f2 = -22 + 1 = -4 + 1 = -3 Diperoleh titik B2, -3 Menggambar grafik fungsi dalam bentuk umumnya Sehingga diperoleh gambar grafik berikut Grafik Fungsi Linear 2y = -4x+1 Tutorial lainnya Daftar Isi Pelajaran Matematika Sekian artikel "Fungsi Linear Pengertian Fungsi Linear, Grafik, dan Contoh Soal". Nantikan artikel menarik lainnya dan mohon kesediaannya untuk share dan juga menyukai halaman Advernesia. Terima kasih...